30-Second Quick Start
Essential Imports
Basic Setup
Parsing
Extraction
Vector Stores
Projects & Configuration
Common Operations Cheat Sheet
Initialize Client
Create Project
Create Project with Retention
Upload File
Parse Document (Default)
Extract Data
Create Vector Store
Add to Vector Store
Search Vector Store
Extract from Vector Store
Type Import Quick Lookup
| Type | Import From | Used For |
|---|---|---|
DexClient | dex_sdk | Client initialization |
DexSyncClient | dex_sdk | Sync client |
ParseEngine | dex_sdk.types | OCR engine selection |
ReductoParseJobParams | dex_sdk.types | Reducto configuration |
IrisParseJobParams | dex_sdk.types | Iris configuration |
ReductoChunkingMethod | dex_sdk.types | Chunking method enum |
ReductoChunkingOptions | dex_sdk.types | Chunking config |
ReductoParseEngineOptions | dex_sdk.types | Parser options |
IrisParseEngineOptions | dex_sdk.types | Iris parser options |
ExtractionParameters | dex_sdk.types | Extraction config |
VectorStoreEngines | dex_sdk.types | Vector store engines |
VectorStoreSearchResult | dex_sdk.types | Search results |
ProjectConfiguration | dex_sdk.types | Project config |
RetentionPolicy | dex_sdk.types | Data retention |
.data, no import needed):
ProjectEntity,FileEntity,ParseResultEntity,ExtractionEntity,VectorStoreEntity
Comparison Tables
OCR Engine Comparison
| Engine | Best For | Languages | Speed | Accuracy |
|---|---|---|---|---|
| Reducto | English & Latin-script documents, tables, figures | Latin scripts + 35+ languages | Fast | High |
| Iris | Non-English, non-Latin scripts (Arabic, Hebrew, CJK, Indic) | Non-Latin scripts | Medium | Very High |
| Custom | Domain-specific needs | Any | Varies | Varies |
Chunking Method Comparison
| Method | Chunk Size | Best For | Embedding | Location Tracking |
|---|---|---|---|---|
| VARIABLE | Auto (optimal) | General use, embeddings | ✅ Excellent | ⚠️ Good |
| BLOCK | Small (~100-500 chars) | Precise locations, UI overlays | ❌ Too small | ✅ Excellent |
| SECTION | Medium (~1000-3000 chars) | Structured documents | ✅ Good | ✅ Good |
| PAGE | Large (full page) | Page-oriented docs | ⚠️ May be large | ✅ Excellent |
| PAGE_SECTIONS | Medium-Large | Hybrid needs | ✅ Good | ✅ Good |
| DISABLED | Very large (entire doc) | Special cases | ❌ Too large | ✅ Excellent |
VARIABLE for most cases, especially with embeddings.
LLM Model Comparison
| Model | Speed | Cost | Best For |
|---|---|---|---|
openai/gpt-4o | Medium | $$$ | Highest accuracy, complex extraction |
openai/gpt-4o-mini | Fast | $ | Good accuracy, simpler extraction |
anthropic/claude-3.5-sonnet | Medium | $$$ | Complex reasoning, long context |
gpt-4o, optimize to gpt-4o-mini if accuracy is sufficient.
Common Patterns
Pattern: Process Multiple Files
Pattern: Extract with Citations
Pattern: Filter Low Confidence Results
Pattern: RAG for Large Documents
Pattern: Retry with Different Chunking
Common Errors & Quick Fixes
| Error | Cause | Quick Fix |
|---|---|---|
AuthenticationError | Missing/invalid credentials | Check SGP_API_KEY and SGP_ACCOUNT_ID env vars |
FileUploadError | Unsupported format or too large | Check file type, reduce size |
ParsingError | OCR failure | Try different engine or check document quality |
ExtractionError | Invalid schema | Validate Pydantic model, check field types |
ConnectionError | Network issues | Check internet connection, verify base URL |
RateLimitError | Too many requests | Implement backoff/retry, reduce concurrency |
Access Response Data
Remember: SDK methods return wrapper objects, access data via.data:
Decision Trees
When to Use Vector Stores?
Which Chunking Method?
Which OCR Engine?
Next Steps
- Getting Started: Step-by-step tutorial
- Advanced Features: Vector stores, batch processing, optimization
- API Reference: Complete SDK documentation
- Troubleshooting: Detailed error solutions

